
ISSN 1996-1588 Наукові праці ДонНТУ №1 (28)-2 (29), 2019
 Серія “Інформатика, кібернетика

 та обчислювальна техніка”

УДК 681.32

Tyanev, Dimitar S., DSc, Prof.

Petkova, Yulka P., PhD, Assoc. Prof.

Technical University of Varna, Bulgaria

dstyanev@yahoo.com, www.tyanev.com

yulka.petkova@tu-varna.bg

Arithmetic Operation Division. Quotient and Remainder.

Logical Structures and Calculation Schemes

A project for fast execution of operation division on signed integer numbers is presented. The final

result of the synthesis is a complete and unique combinational scheme. Synthesis requires a

presentation of the theoretical ground for operation division and the resulting algorithms for

calculating the quotient and the remainder. The operands and the results of the operation are twos’

complement numbers. The first part of the article presents the synthesis of the logical structure and of

the combinational scheme for calculation of the first result - the quotient. The second part presents

the synthesized algorithm and the logic scheme for calculating the second result - the remainder. The

entire logic scheme for performing a division operation described in the conclusion shows that this

operation is executable over the switching time of the combinational scheme. Thus, the calculation of

the two results is as fast as possible, which can be achieved. A further exemplary logical structure of

the divider with a micro-pipeline organization is also presented. It is suitable for serial execution of

operation division. The functionality of the presented here hardware divider is illustrated by

numerical examples.

Key Words: Operation Division, Integer Numbers, Quotient, Remainder, Algorithm, Logic Scheme

DOI: 10.31474/1996-1588-2019-1-28-89-96

Main Considerations

 In both scientific publications and academic

monographs (the vast list of which we do not apply

here), the theoretical as well as the algorithmic side of

the operation division are mainly concentrated on the

calculation of the first result - the quotient. There is

also a second result of this operation - a remainder. The

calculation of the quotient is sought by two main

approaches: based on the definition of the operation

(Z=X/Y) [1], [4] or the definition (Z=(1/Y).X . In most

cases the synthesized algorithms are based on positive

operands or non-signed operands [2], [3], [6], which

operation is defined as division by module. Although

digital arithmetic is a scientific area that has been

explored for decades [1], [4] there are rarely

publications that contain algorithms for determining

the remainder. Operation division can also be defined

by multiplication operation X=Y.Z+R, where R is the

remainder. The conclusion of this definition is that the

remainder is an integer and, in order for equality to be

true, it should have the sign of the dividend X. The

same n-bit format of the bit-set is considered for the

operands and the results.

 Operation division (Z=X/Y) is relatively rarely met

(about 2.5%). Due to its complex algorithm, it is

considerably slower than other integer number

operations, which is recognized even now [10]. For

these reasons, multi-step sequential devices are still

being designed for its implementation [5]. However,

this trend is an experience, so the efforts to end it are

fully justified [6]. The desire for guaranteed speeding-

up the calculations also leads us to a choice of a

hardware implementation.

 A consideration should also be given to the fact

that the integer numbers are stored in the memory of

the computer systems as 2’s complement signed

numbers. In this representation, they are operands, and

the results are automatically obtained as 2’s

complement numbers too. This also applies to

operation division. The use of the one’s complement

operands, which holds most authors to algorithms by

module, is not up to date. The example of the non-

homogeneous hardware solution shown in [6], which

necessitates the alternation of adders and subtractors is

a typical one. The main disadvantage of the subtractors

is their greater cost compared to the adders. We try to

avoid this drawback. It is also a fact that the machine

commands for division in the digital processors require

the calculation of both results (quotient and remainder),

presented as twos’ complement numbers regardless of

the user's wishes. The two numbers remain at its

disposal in two different ALU registers.

 For illustration, in our project, we have chosen the

non-restoring algorithm for twos’ complement signed

numbers based on the fixed divisor scheme. However,

the approach we use can be successfully applied to

other algorithms, such as those that allow the

simultaneous obtaining of several digits of the quotient

[4]. It is shown that the synthesized hardware divider

calculates the quotient for both integer and fractional

numbers, which is a prerequisite in dividing numbers

represented in floating-point form.

Part 1 – Calculation of the Quotient

 The logic synthesis presented here deliberately

misses the detailed presentation of the chosen

89

http://www.tyanev.com/

ISSN 1996-1588 Наукові праці ДонНТУ №1 (28)-2 (29), 2019
 Серія “Інформатика, кібернетика

 та обчислювальна техніка”

algorithm, as it is a fundamental one in digital

arithmetic. We recall that the direct calculation of the

quotient Z begins after the left normalization of the

dividend X and the divisor Y. Left-normalized

operands are denoted here by names Wx and Wy. At

each iteration of the algorithm, one digit (0 or 1) of the

quotient zm, m = 1,2,3, ..., n is obtained and the next

operation (addition or subtraction) is determined. The

rules are presented in Table 1.1.

Table 1.1. Determining the consecutive digit of the

quotient and the next operation

Sign of the

Remainder

Rm

Sign of the

Divisor

Wy

Consecutive

digit of the

Quotient

zm

Next operation

Rm+1=

+ + 1 2.Rm - Wy

+ - 0 2.Rm + Wy

- + 0 2.Rm + Wy

- - 1 2.Rm - Wy

 As with multiplication, the idea of speeding-up

operation division consists in the use of multiple

adders. Thus the implementation of the actual division

will be sought in the form of a combinational scheme.

 The next digit zm of the quotient is determined

comparing the sign of the divisor with the sign of the

current partial remainder Rm. Accepting Table 1.1 as a

truth table, we can synthesize a logic function that

determines the value of the next digit in the quotient.

Its equation is as follows

()

()
(1.1).2n,0m

,]1[nWy]1[nR

]1[nWy]1[nRz

m

mm

−=

−−

−−=

 This is the elementary logical function of

equivalence, i.e. if the signs of the current partial

remainder and the divisor coincide, one (1) is recorded

in the quotient, otherwise - zero (0). Along with this, a

left shift is made to the partial remainder (2.Rm). The

left shifting restores the order of the polynomial of the

partial remainder to (n-2).

 The next partial remainder Rm+1 is obtained after

adding or subtracting the normalized divisor as

indicated in the right column of Table 1.1

(Rm+1=2.Rm±Wy). The arithmetic operation requires

an adder. Function (1.1) is used for choosing the

second operand in this sum.

 So, we end this explanation stage with the resulting

logical structure, presented in Figure 1.1.

 As can be seen, the sign of the divisor RGWy[n-1]

and the sign of the new partial remainder Rm[n-1]

form the current digit in the quotient zm according to

(1.1).

 In order to obtain the current partial remainder Rm,

the 1-bit left-shifted previous partial remainder Rm-1 is

fed at the left input of the current adder ADDm, i.e.

2.Rm-1 = (Rm-1[(n-2)…0]│0).

ADDm
n-1 0

R
m-1

[(n-2)0] | 0

(R
m

[n-1])

(RG Wy) (RG Wy)

(CS+)
m-1

(CS-)
m-1

R
m

[(n-1)0]

(p
-1

)
m

 = +1
=1

RGWy[n-1]

z
m

MUX

Fig. 1.1. Logical structure of the current adder in the

divisor (current m level)

 At the right input of the adder, the normalized

divisor Wy is fed to the addition or subtraction via the

two-input multiplexer MUX. It is the content of the

RGWy register where it remains until the end of the

operation. The control of the right input of the adder is

made by control signals (CS+) and (CS-). The logical

values of these signals are encoded according to the

following logic function:

(1.2)
.0)(CS,1)(CS,1

;0)(CS,1)(CS,0
zm





=+=−

=−=+
=

then

then
if

 The quotient is a signed number and it is

automatically received as a twos’ complement number.

Its numerical part takes a bit-set of (n-1) bits. Hence,

the hardware divider must have (n-1) number of levels

to calculate (n-1) digits. The sign of the quotient is

determined in advance. It defines the initial content of

the quotient registry RGZ.

)(1.3

.12111...111:RGZ

,1SignZ

;0000...000:RGZ

,0SignZ

1n











−==

=

==

=

−
then

then

if

if

 The latter which needs to be clarified, is that the

quotient does not always get exactly in this algorithm

due to the asymmetry of the twos’ complement

representation of the operands. The rules used for

quotient correction (adjustment) are presented in Table

1.2.

Table 1.2. Correction of the quotient

Sign of the

Dividend X

Sign of the

Divisor Y
Correction

+ + No correction

+ - +1

- + +1, if Rk-l+1  0

- - +1, if Rk-l+1 = 0

 In this table, Rk-l+1 denotes the last partial

remainder, where k is the order of the polynomial of

the dividend X, and l - the order of the divisor Y,

90

ISSN 1996-1588 Наукові праці ДонНТУ №1 (28)-2 (29), 2019
 Серія “Інформатика, кібернетика

 та обчислювальна техніка”

respectively. Operands and results have the same

format of n bits. The result of the left normalization of

the operands gives also the number N (N=k-l+1),

which presents the number of unknown digits of the

quotient.

 As shown in Table 1.2, when the quotient is not

correct, it is adjusted by adding one to its least

significant bit. This necessitates recognition of the

relevant situations defined in the table. Recognizing (or

decoding) the need for correction performs a logical

function that depends on the signs of the operands, and

in the latter two cases, whether or not the division is

exact. If Table 1.2 is treated as a truth table, it can be

considered that the logical function expressing the need

for quotient correction is a disjunction of three logical

terms

(1.4),cor3cor2cor1COR =

where cor means correction. The first term expresses

the correction condition according to the second row of

the table

)(1.5.1])(Y[n1])(X[ncor1 −−=

 The second and the third term (cor2 and cor3) are

correction functions related to the third and fourth case

respectively. These functions depend on the signs of

the operands, as well as on the value of the last partial

remainder, i.e. whether the division is exact or not. So

we get the following expressions for them:

  (1.6),EQ(R))1](Y[n)1](X[ncor2 −−=

and therefore

  (1.7).EQ(R))1](Y[n)1](X[ncor3 −−=

 In the above expressions EQ(R) denotes the logical

value of a function that decodes a zero partial

remainder in an arbitrary iteration (arbitrary level)

during the division. Since this fact has to be decoded at

each iteration, this function should have the following

cumulative look:

(1.8).)EQ(REQ(R)
2n

0m
m

−

=

=

 In other words, function (1.8) expresses the

possibility of prematurely exact division, which can be

observed at each iteration.

 We want to draw attention to the fact that,

according to the understanding of the traditional

division algorithm, the last partial remainder has an

extremely complex definition of being the last one. For

example, it is the last one if all the unknown digits of

the quotient, i.e. if all N digits are obtained. However,

there are cases of an exact premature division, after a

different number of levels, before the control number is

reached. In the sense of the problem solved here, i.e. in

the sense of the hardware implementation of the

division process, determining the remainder as the last

one is extremely inconvenient as it can be obtained at

any arbitrary level of the logic scheme of the divider.

Therefore, the statement that the division is exact, if

the quotient does not have a fractional part, is a very

convenient interpretation of whether or not a correction

is needed in the last two cases of the table.

 Based on the above explanation, we can present

the synthesized part of the structure of the hardware

divider.

In
te

g
e
r

p
a
rt

o
f

th
e
 q

u
o
ti
e
n
t

Z
 Wx Wy

Hardware
divider

zn-2

zn-3

zn-4

z0

z2

z1

,



P
ro

g
ra

m
m

a
b

le

s
h

if
t

 a
rr

a
y

Partial part of the
quotient Z

K

Correction

+
1

R
e

g
is

te
r

 o
f

 t
h

e

q

u
o

ti
e

n
t
 Z

cor1 cor2 cor3

1

½

A
D

D
E

R

n
-1

n
-2

1

0

-1

-r

Fig. 1.2. Structural scheme for the stage of the actual

division

 The two left normalized operand which signs

define the initial content of the quotient register RGZ

are fed to the inputs of the hardware divider. (n-1)

digits of the quotient (zn-2, zn-3, …, z1, z0), as well as

the three terms of the correction function (cor1, cor2,

cor3), come out of the scheme. The quotient is fed to a

right-shift programmable array. The shifting is in the

direction of the radix point and it is an arithmetic shift,

i.e. with the so-called sign extension. As can be seen

from the drawing, this scheme is programmed to shift

by parameter K. The number of shifts is defined as:

K = (n-1) – N . (1.9)

 The value of parameter K can be calculated at the

left normalization stage when calculating the value of

N (number of unknown digits in the quotient). Then,

this value must be stored in a different registry RGK

until the end of the operation.

 As far as the correction is concerned, the above

scheme illustrates how the result, which is shifted and

positioned according to the right position of the radix

point is adding with the value of the COR (0 or 1)

function fed to the least significant bit №0 of the half-

adder ½ADDER. The fractional part of the quotient in

the structural scheme is shown for illustration only. It

is untrue without correction and should be discarded. If

we still want to keep it, then the correction (+1) must

be applied not in the least significant bit of the integer

(b0), but in the least significant fixed bit of the real

quotient (b-r).

 Figure 1.3. bellow presents the synthesized logical

scheme of a hardware divider, which always calculates

7 most significant digits of the quotient (z6 to z0).

91

ISSN 1996-1588 Наукові праці ДонНТУ №1 (28)-2 (29), 2019
 Серія “Інформатика, кібернетика

 та обчислювальна техніка”

(УС-)
1

(УС+)
1

& &

1

Wx7

(Рг. Wy)

(Рг. Wy)

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

(Рг. Wx)

=1

(УС-)
2

(УС+)
2

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

SM

P Z

X Y P

Z6

& & & & & & &

(УС-)
3

(УС+)
3

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

Z5

& & & & & & &
EQ(R2)

(УС-)
4

(УС+)
4

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

Z4

& & & & & & &
EQ(R3)

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

(УС-)
5

(УС+)
5

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

SM

P Z

X Y P

Z3

& & & & & & &
EQ(R4)

(УС-)
6

(УС+)
6

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

Z2

& & & & & & &
EQ(R5)

(УС-)
7

(УС+)
7

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

& &

1

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

Z1

& & & & & & &
EQ(R6)

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

SM

P Z

X Y P

Z0

& & & & & & &

EQ(R7)

1

EQ(R1)

1

1

1

1

1

EQ(R)

&

&

&

cor2

cor3

cor1
1

COR

=1

=1

=1

=1

=1

=1

=1

Wx6 Wx5 Wx4 Wx3 Wx2 Wx1 Wx0

Wy6 Wy5 Wy4 Wy3 Wy2 Wy1 Wy0 Wy7

Wy6 Wy5 Wy4 Wy3 Wy2 Wy1 Wy0 Wy7

Fig. 1.3. Principal logic scheme of a hardware divider 8x8

92

ISSN 1996-1588 Наукові праці ДонНТУ №1 (28) -2 (29), 2019
 Серія “Інформатика, кібернетика
 та обчислювальна техніка”

After shifting of K-bits to the right, as shown in

the examples and in the logical structure presented in

Figure 1.2, the most significant N digits of the integer

remain in the register of the quotient. As is known, the

left-most bit contains the determined initial sign of the

quotient z7, and the subsequent digits repeat it,

completing at left the shifted N-bit quotient according

to the rule for the sign extension.

 As noted in the analysis, it is not possible for the

hardware solution of the actual division to achieve that

dynamics that is inherent in the algorithm. We mean

the actual length of the quotient, which varies and it is

expressed by the parameter N. The actual length of the

quotient is adapted to the scheme by the parameter K,

which initializes the programmable shift array.

However, the functionality of the solution favors its

use in the case of floating point division. As is known,

the mantissas of the operands are always left

normalized numbers, from which it follows that the

quotient always gets the same length. In other words,

when divide numbers with a left-fixed point, the

hardware divider does not depend in its synthesis on

the parameter N and its structure does not require a

programmable shift array. In order to align the two

cases, the shift array can be further manipulated to be

transparent when divide left-fixed point numbers.

Part 2 – Calculation of the Remainder

Theoretical Ground

Based on the synthesis outlined above in the first

part, here we present its continuation, referring to the

hardware calculation of the second result - the

remainder. In conclusion, we describe our idea of the

complete structure of the combinational logic scheme

of the divider, which makes the division operation

identical to the multiplication operation in both

structure and performance. In order to optimize the

combinational scheme of the divider and minimize its

latency, the same methods that are possible on the

hardware multiplier [4] can be used.

 We have already pointed out that division Z=X/Y

is the most complex arithmetic operation, unlike any

other and generates two independent results required in

the computational algorithms - quotient Z and

remainder R. The following definition of operation

division can be given: the quotient and the remainder

are such numbers that Z.Y+R = X.

 We also recall that Y is called a module for

comparing number X with other numbers having the

same remainder R as well as that the quotient Z is

defined as a multiplication factor of the module Y in

this conception. Exactly in this interpretation, number

X can be expressed by the multiplication factor Z, the

comparison module Y and the remainder, or the image

R, so X = Z.Y + R.

 The iterative algorithm which is applied to obtain

the digits of the quotient is preceded with a left

normalization of the operands. In the process of this

normalization, the integer N, indicating the number of

unknown digits of the quotient, is determined. The

number N is defined by the equation N = k-l+1.

 Presenting the algorithm in [4], it is shown that the

partial remainder, which determines the last digit in the

quotient, can be used to derive the following equation

.Z.YXR.2 1lk
l)(k −=+−

−−

 According to the definition given at the beginning,

this equality can be written as

(2.1).RR.2 1lk
l)(k =+−

−−

 Equality (2.1) is remarkable in that it expresses

how the second result of a division operation can be

obtained, namely the remainder R of the division. The

conclusion is that the remainder R is contained in the

last partial remainder Rk-l+1, which should be shifted

(k-1)-bit to the right to be represented correctly as an

integer. This is a signed number and will be

automatically received in its twos’ complement

representation.

 There is one further explanation. If the last

subtraction yielding the last partial remainder Rk-l+1,

has been successful, it contains the desired remainder

R. However, if the subtraction has been unsuccessful,

then the last partial remainder Rk-l+1 should be

restored from the preceding partial remainder Rk-l.

The desired remainder R is to be contained in Rk-l.

Restoration of the previous partial remainder is

achieved by adding or subtracting the divisor Wy, an

operation selected according to the rule as follows

(2.2)

.WyRR

,]1Wy[n)]1[nR(

;WyRR

,]1Wy[n)]1[nR(

1lklk

1lk

1lklk

1lk













+=

−−

−=

−=−

+−−

+−

+−−

+−

then

then

if

if

 Finally, the remainder R can be calculated

applying the following algorithm:

• If the obtained quotient Z is an odd number, the

remainder R is contained in the last difference.

• If the obtained quotient Z is an even number, the

remainder R is contained in the preceding

difference. In this case, for the determination

of the remainder, it is necessary to restore the

previous difference.

• The final remainder is obtained after an arithmetic

shift to the right of the (k-l) bits of the

corresponding partial remainder.

 Two numerical examples illustrating the explained

algorithm are presented below. Both examples

illustrate an inexact division, i.e. dvision with

remainder. The first example illustrates a division of

two positive integers and the quotient being an even

number. The latter fact leads the algorithm to the case

when the remainder is contained in the preceding

difference (000100). It is restored, then (k-l)-bit

shifting to the right follows and the remainder is

formed.

93

ISSN 1996-1588 Наукові праці ДонНТУ №1 (28) -2 (29), 2019
 Серія “Інформатика, кібернетика
 та обчислювальна техніка”

Examples

Example 1. Perform a division operation Z=X/Y of

the numbers X=31 and Y=5, which are presented in a

bitset of 6 bits (n = 6 [b]).

 We should get the following results: quotient Z=6

and remainder R=1, i.e. 31=5.6+1.

|X| = 0 11111 ; |Y| = 0 00101 .

Normalization of the operands X and Y.

 0 11111 = X

 Dividend is normalized

 0 11111 = Wx

 0 00101 = Y

 2

 Left normalization of
 the Divisor (2 bits)

 0 10100 = Wy
N = 2-0+1 = 3 (3 unknown digits of the quotient)

k-1 = 2-0 = 2 - shifted to 2[b] to form the remainder.

 |Z| = 0 00zzz = ? Wy = 0 10100

 0 00110, = 6. Wx = 0 11111

 subtraction +
 1 01100

 Diff. > 0 0 01011
 
 0 10110
 subtraction +
 1 01100

 Diff. > 0 0 00010
 
 0 00100
 subtraction +
 1 01100

 Diff. < 0 1 10000

 Recovery of the previous partial remainder:

 1 10000
 addition +
 0 10100

 0 00100

 k-l=2 →

 0 00001 ,

 R = 1 .

re
c
o
v
e
ri
n
g

 In this case, the quotient does not need a

correction: Z=+6.

 The second example illustrates the division of two

negative numbers, and the quotient is being an odd

number. The latter fact leads the algorithm to the case

when the remainder is contained in the last difference

(10100000). This is the case where the last difference

contains the remainder that is formed after the required

shifting.

Example 2. Perform a division operation Z=X/Y of

the numbers X= -97 and Y= -7, which are presented as

twos’ complement numbers in a bitset of 8 bits

(n=8[b]). We should get this answer: quotient Z=+13

and remainder R= -6, i.e. (-97) = (-7).13-6.

    .11110011Y;00111111Х sC2'sC2' ==

Normalization of the operands X and Y.

 1 0011111 = X

 Dividend is normalized

 1 0011111 = Wx

 1 1111001 = Y

 4

 Left normalization of
 the Divisor (4 bits)

 1 0010000 = Wy

N=4-0+1 = 5 (5 unknown digits of the quotient)

k-1=4-0 = 4 - shifted to 4 [b] to form the remainder.

 [Z]2’C = 0 00zzzzz = ? Wy = 1 0010000

 0 0001101, =13 Wx = 1 0011111

 subtraction +
 0 1110000

 1  0 0 0001111
 Sign(Wy)  Sign(Diff)
 
 0 0011110
 addition +
 1 0010000

 1 = 1 1 0101110
 
 0 1011100
 subtraction +
 0 1110000

 1 = 1 1 1001100
 
 1 0011000
 subtraction +
 0 1110000

 1  0 0 0001000
 
 0 0010000
 addition +
 1 0010000

 1 = 1 1 0100000

 1 0100000

 k-l=4 →

 1 1111010 ,

 = [R]2’C ; R = -6 .

 In this case, the quotient does not need an

adjustment: Z=+13.

 Operation division is the most complex of all

operations on integer numbers. Various situations in

various combinations can occur during their execution.

Such situations are indefiniteness (Y=0), overflow,

exact division, and prematurely exact division. To

illustrate all these cases, a number of numerical

examples should be performed. Such examples, which

are useful for real synthesis, can be seen in [8].

Synthesis of the Logical Structure

 The exposed theoretical grounds, algorithms and

numerical examples allow us to synthesize that part of

94

ISSN 1996-1588 Наукові праці ДонНТУ №1 (28) -2 (29), 2019
 Серія “Інформатика, кібернетика
 та обчислювальна техніка”

a logical structure that complements the one presented

in the first part of the explanation to its final

appearance.

 We consider the presentation of our project to be

completed with what we have said here. There are, of

course, a few more details, such as the case of

undefined operation (when Y=0), or the case of

overflow when divide integer numbers, etc. The

reflection of these subtleties in the synthesized scheme

is quite possible, requiring only an excellent

knowledge of the algorithm.

In
te

g
e
r

 p
a
rt

o
f

th
e
 q

u
o
ti
e
n
t

Z

Wx Wy

Hardware
divider

zn-2

zn-3

zn-4

z0

z2

z1

,



P
ro

g
ra

m
m

a
b

le

s
h

if
t

 a
rr

a
y

Fractional part
of the quotient Z

K

Correction +
1

R
e

g
is

te
r

 o
f

 t
h

e

q
u

o
ti
e

n
t

Z

cor1 cor2 cor3

1

½

A
D

D
E

R

n
-1

n
-2

1

0

-1

n
-1

0

A
D

D

Z

MUX

Rk-l+1

+Wy

-Wy

Z[0]

n-1 0

K-1

P
ro

g
ra

m
m

a
b
le

s
h
if
t
 a

rr
a
y

R
e

g
is

te
r

o
f

th
e

 r
e

m
a

in
d

e
r
 R

,

 n
-1

n
-2

1

0

R

=
1

Rk-l+1[n-1]

Wy[n-1]

Fig. 2.1. Logical structure of the hardware divider,

supplemented by the elements needed to calculate the

remainder

 The complete implementation of the hardware

divider in the form of a single combinational scheme is

entirely possible. This translates the division into a

single cycle operation, making it analogous to

multiplication operation, as well as to some structural

elements in the Floating Point Units (FPU).

Conclusion

 We briefly describe the entire composition of this

sophisticated combinational circuit. Only 4 registers

are needed - 2 input registers for the input operands X

and Y and two output registers for both results -

quotient Z and remainder R. Between these two pairs

of registers, the following composite combinational

circuits are sequentially arranged. First of all, on the

input registers, there are schemes for determining the

number of the leftmost insignificant digits of the

operands. These are combinational schemes that are

synthesized in our project, published in [7].

 The numbers formed by these two schemes are fed

to an adder that calculates the above mentioned number

N. As a result of this adder, there may be also the

numbers K and (K-1) required to initialize the next

functional elements of the scheme. The operands are

still at the input of the hardware divider, and two

combinations come at its outputs. The first one, passing

through the shift array and the half-adder ½ ADDER

(Figure 1.1), is loaded in the register RGZ as a first

result - quotient Z. The second one, representing the

last difference Rn-1, passes sequentially through the

adder ADD and the right shifting array and is loaded in

the output register RGR as a second result - remainder

R. If the scheme is used to divide floating-point

numbers, the remainder loses its meaning and the

number K takes a value of 0 that makes the shifting

array transparent.

 The two numerical examples presented in the

article illustrate the functioning of the algorithm and

the synthesized logical structure. More numerical

examples can be seen in [8].

 The sequential elements in the described

combinational scheme can be organized into a micro-

pipeline shown in Figure 2.2. The pipeline organization

will allow to increase the performance of the

calculation unit in cases where the mathematical

calculations contain multiple consecutive division

operations. The micro-pipeline control of the hardware

divider can be achieved with the methods and means,

which are described in detailes in the monograph [9].

RG X RG Y

SHL X SHL Y

ADD

Wx Wy

N, K, K-1

RGF Wx RGF Wy

RGF N,K,K-1

ADD

R1

RGF R1

ADD

R2

RGF R2

ADD

Rk-l+1

RGF Rk-l+1

SHL Z’

Z’

RGF Z’

ADD

RG Z

ADD

RGF Rk-l

Rk-l

SHR

R

RG R

RGF Z’

Z

Fig. 2.2. Examplary logical structure for micro-pipeline

organization of the hardware divider

 As can be seen from the structure of the pipeline, it

includes RGF registers, combinational schemes –

adders ADD, programmable arrays shifting to the left –

SHL, and right - SHR. The structure also includes

finite state machines required to control the individual

stages of the pipeline, which are depicted on the

diagram.

95

ISSN 1996-1588 Наукові праці ДонНТУ №1 (28) -2 (29), 2019
 Серія “Інформатика, кібернетика
 та обчислювальна техніка”

References

[1]. Richard, P., Zimmermann, B., Zimmermann, P., (2010), Modern Computer Arithmetic, Cambridge

Monographs on Computational and Applied Mathematics (No. 18), Cambridge University Press, November

2010, 236 pages. ISBN-13: 978-0521194693.

[2]. Cavagnino, D., Werbrouck, A., (2008), Efficient Algorithms for Integer Division by Constants Using

Multiplication, The Computer Journal, Volume 51, Issue 4, 1 July 2008, Pages 470–480.

[3]. Kumar, D., Saha, P., Dandapat, A., (2017), Hardware Implementation of Methodologies of Fixed Point

Division Algorithms, International Journal of Smart Sensing and Inteligent Systems, Vol. 10, No.3,

September 2017.

[4]. Tyanev, D. S., (2008), Computer Organization. Tom1, Tom 2, Technical University of Varna, ISBN: 978-

954-20-0412-7, ISBN 978-954-20-0413-4.

 Accessible from: http://www.tyanev.com/home.php?lang=bg&mid=18&mod=1&b=12 .

[5]. Trummer, R., Zinterhof, P., Trobec, R., (2005), A High-Performance Data-Dependent Hardware Divider,

Parallel Numerics’05, 193-206 M. Vajterˇsic, R. Trobec, P. Zinterhof, A. Uhl (Eds.) Chapter 7: Systems

and Simulation, ISBN: 961-6303-67-8.

[6]. Takagi N., Kadowaki, S., Takagi, K., (2005), A hardware algorithm for integer division. Computer

Arithmetic. ARITH-17 2005, 17th IEEE Symposium, ISSN: 1063-6889.

[7]. Tyanev, D. S., Petkova, Y. P., (2015), Logic scheme for determining the number of leftmost insignificant

digits in a bit-set of any length. SciTechnol: Journal of Computer Engineering & Information Technology,

USA, ISSN: 2324-9307, 2015, Vol. 4, Issue 1. doi: 10.4172/2324-9307.1000123.

Accessible from: https://www.scitechnol.com/logic-scheme-for-determining-the-number-of-leftmost-

insignificant-digits-in-a-bitset-of-any-length-hRjK.php?article_id=3259

[8]. Tyanev, D. S., (2007), Computer organization. Digital arithmetic’s – exercises, Technical University of

Varna, ISBN: 954-20-0258-0.

Accessible from: http://www.tyanev.com/home.php?lang=bg&mid=18&mod=1&b=7 .

[9]. Tyanev, D. S., (2016), Asynchronous pipeline systems with common structures (Synthesis Methodology),

Technical University of Varna.

Accessible from: http://www.tyanev.com/home.php?lang=bg&mid=18&mod=1&b=14

[10]. Lemire, D., Kaser, O., Kurz, N., (2019), Faster Remainder by Direct Computation Applications to

Compilers and Software Libraries. Accessible from: https://arxiv.org/abs/1902.01961.pdf .

Received 20.05.2019

Д.С. ТЯНЕВ, Ю.П. ПЕТКОВА

Технический университет Варны, Болгария.

АРИФМЕТИЧЕСКОЕ ДЕЛЕНИЕ. ЧАСТНОЕ И ОСТАТОК. ЛОГИЧЕСКИЕ

СТРУКТУРЫ И ОПЕРАЦИОНЫЕ СХЕМЫ
Представлен проект вычислителя для быстрого выполнения операции деления целых чисел со знаком.

Конечным результатом синтеза является полная и уникальная комбинационная схема. Операнды и

результаты операции являются числами, представленными в дополнительном коде. Приведены синтез

логической структуры и комбинированной схемы для расчета первого результата – частного и

синтезированный алгоритм и логическая схема для вычисления второго результата - остатка. Операция

выполняется в течение времени переключения схемы комбинации, то есть вычисление двух результатов

происходит максимально быстро.

Ключевые слова: операция деление, частное, остаток, алгоритм, логическая схема.

Д. С. ТЯНЕВ, Ю.П. ПЕТКОВА

Технічний університет Варни, Болгарія.

АРИФМЕТИЧНЕ ДІЛЕННЯ. ЧАСТКА І ЗАЛИШОК. ЛОГІЧНІ СТРУКТУРИ І ОПЕРАЦІЙНІ

СХЕМИ

Представлений проект обчислювача для швидкого виконання операції ділення цілих чисел зі знаком.

Кінцевим результатом синтезу є повна і унікальна комбінаційна схема. Синтез вимагав представлення

теоретичного обгрунтування для операції ділення і отриманих алгоритмів для обчислення частки і

залишку. Операнди і результати операції є числами, представленими в додатковому коді. У статті

наведено синтез логічної структури і комбінованої схеми для розрахунку першого результату – частки, а

також синтезований алгоритм і логічну схему для обчислення другого результату – залишку. Операція

виконується протягом часу перемикання комбінаційної схеми, таким чином, обчислення двох результатів

відбувається максимально швидко.

Ключові слова: операція ділення, приватне, залишок, алгоритм, логічна схема.

96

http://www.cambridge.org/
javascript:;
http://www.tyanev.com/home.php?lang=bg&mid=18&mod=1&b=12
https://www.scitechnol.com/logic-scheme-for-determining-the-number-of-leftmost-insignificant-digits-in-a-bitset-of-any-length-hRjK.php?article_id=3259
https://www.scitechnol.com/logic-scheme-for-determining-the-number-of-leftmost-insignificant-digits-in-a-bitset-of-any-length-hRjK.php?article_id=3259
http://www.tyanev.com/home.php?lang=bg&mid=18&mod=1&b=7
http://www.tyanev.com/home.php?lang=bg&mid=18&mod=1&b=14%20
https://arxiv.org/abs/1902.01961.pdf

