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A project for fast execution of operation division on signed integer numbers is presented. The final
result of the synthesis is a complete and unique combinational scheme. Synthesis requires a
presentation of the theoretical ground for operation division and the resulting algorithms for
calculating the quotient and the remainder. The operands and the results of the operation are twos’
complement numbers. The first part of the article presents the synthesis of the logical structure and of
the combinational scheme for calculation of the first result - the quotient. The second part presents
the synthesized algorithm and the logic scheme for calculating the second result - the remainder. The
entire logic scheme for performing a division operation described in the conclusion shows that this
operation is executable over the switching time of the combinational scheme. Thus, the calculation of
the two results is as fast as possible, which can be achieved. A further exemplary logical structure of
the divider with a micro-pipeline organization is also presented. It is suitable for serial execution of
operation division. The functionality of the presented here hardware divider is illustrated by
numerical examples.
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Main Considerations

In both scientific publications and academic
monographs (the vast list of which we do not apply
here), the theoretical as well as the algorithmic side of
the operation division are mainly concentrated on the
calculation of the first result - the quotient. There is
also a second result of this operation - a remainder. The
calculation of the quotient is sought by two main
approaches: based on the definition of the operation
(Z=X1Y) [1], [4] or the definition (Z=(1/Y).X . In most
cases the synthesized algorithms are based on positive
operands or non-signed operands [2], [3], [6], which
operation is defined as division by module. Although
digital arithmetic is a scientific area that has been
explored for decades [1], [4] there are rarely
publications that contain algorithms for determining
the remainder. Operation division can also be defined
by multiplication operation X=Y.Z+R, where R is the
remainder. The conclusion of this definition is that the
remainder is an integer and, in order for equality to be
true, it should have the sign of the dividend X. The
same n-bit format of the bit-set is considered for the
operands and the results.

Operation division (Z=X/Y) is relatively rarely met
(about 2.5%). Due to its complex algorithm, it is
considerably slower than other integer number
operations, which is recognized even now [10]. For
these reasons, multi-step sequential devices are still
being designed for its implementation [5]. However,
this trend is an experience, so the efforts to end it are
fully justified [6]. The desire for guaranteed speeding-
up the calculations also leads us to a choice of a
hardware implementation.
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A consideration should also be given to the fact
that the integer numbers are stored in the memory of
the computer systems as 2’s complement signed
numbers. In this representation, they are operands, and
the results are automatically obtained as 2’s
complement numbers too. This also applies to
operation division. The use of the one’s complement
operands, which holds most authors to algorithms by
module, is not up to date. The example of the non-
homogeneous hardware solution shown in [6], which
necessitates the alternation of adders and subtractors is
a typical one. The main disadvantage of the subtractors
is their greater cost compared to the adders. We try to
avoid this drawback. It is also a fact that the machine
commands for division in the digital processors require
the calculation of both results (quotient and remainder),
presented as twos’ complement numbers regardless of
the user's wishes. The two numbers remain at its
disposal in two different ALU registers.

For illustration, in our project, we have chosen the
non-restoring algorithm for twos’ complement signed
numbers based on the fixed divisor scheme. However,
the approach we use can be successfully applied to
other algorithms, such as those that allow the
simultaneous obtaining of several digits of the quotient
[4]. 1t is shown that the synthesized hardware divider
calculates the quotient for both integer and fractional
numbers, which is a prerequisite in dividing numbers
represented in floating-point form.

Part 1 — Calculation of the Quotient

The logic synthesis presented here deliberately
misses the detailed presentation of the chosen


http://www.tyanev.com/

ISSN 1996-1588

Hayxoei npayi JJouHTY

Nel (28)-2 (29), 2019

Cepis “Ingpopmamuxa, kibepnemuxa
ma 06uUCT8ANbHA MmexXHIKa

algorithm, as it is a fundamental one in digital
arithmetic. We recall that the direct calculation of the
quotient Z begins after the left normalization of the
dividend X and the divisor Y. Left-normalized
operands are denoted here by names Wx and Wy. At
each iteration of the algorithm, one digit (0 or 1) of the
quotient zm, m = 1,2,3, ..., n is obtained and the next
operation (addition or subtraction) is determined. The
rules are presented in Table 1.1.

Table 1.1. Determining the consecutive digit of the
quotient and the next operation

. . Consecutive
<l qf live Slgr_1 C.Jf the digit of the | Next operation
Remainder | Divisor Quotient Rm+1=
Rm Wy Zm g

+ + 1 ZRm - Wy
+ - 0 2.Rm + Wy
- + 0 2.Rm + Wy
- - 1 2.Rm - Wy

As with multiplication, the idea of speeding-up
operation division consists in the use of multiple
adders. Thus the implementation of the actual division
will be sought in the form of a combinational scheme.

The next digit zm of the quotient is determined

comparing the sign of the divisor with the sign of the
current partial remainder Rm. Accepting Table 1.1 as a

truth table, we can synthesize a logic function that
determines the value of the next digit in the quotient.
Its equation is as follows

Zm = (RmIn-1] N Wy[n-1]) u
U (Rp=11 ~ Wyln-17 ),

m=0,n-2 .

(1.1)

This is the elementary logical function of
equivalence, i.e. if the signs of the current partial
remainder and the divisor coincide, one (1) is recorded
in the quotient, otherwise - zero (0). Along with this, a
left shift is made to the partial remainder (2.Rm). The
left shifting restores the order of the polynomial of the
partial remainder to (n-2).

The next partial remainder Rm+1 is obtained after
adding or subtracting the normalized divisor as
indicated in the right column of Table 1.1
(Rm+1=2.Rm=Wy). The arithmetic operation requires
an adder. Function (1.1) is used for choosing the
second operand in this sum.

So, we end this explanation stage with the resulting
logical structure, presented in Figure 1.1.

As can be seen, the sign of the divisor RGWy[n-1]
and the sign of the new partial remainder Rm[n-1]
form the current digit in the quotient zy according to
(1.2).
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In order to obtain the current partial remainder Ry,
the 1-bit left-shifted previous partial remainder Rm-1 is
fed at the left input of the current adder ADDpy,, i.e.

2.Rm-1 = (Rm-1[(n-2)...0] | 0).

RGWy[n-1] (RGWy) (RGWy) cs
m-1
R, 4[(1-2):0] |0 L, .
1 A 2 (CS)1
MUX
ADD, A

z

m =1—* \ ot i 2 (p—l)m =+

(R [n-1]) .
m L R l0-0-0]

Fig. 1.1. Logical structure of the current adder in the
divisor (current m level)

At the right input of the adder, the normalized
divisor Wy is fed to the addition or subtraction via the
two-input multiplexer MUX. It is the content of the
RGWy register where it remains until the end of the
operation. The control of the right input of the adder is
made by control signals (CS+) and (CS-). The logical
values of these signals are encoded according to the
following logic function:

0, th CS+)=1, (CS-)=0;

it 75— 0 then (CS9) (€S5) (1.2)
1, then (CS-)=1, (CS+)=0.

The quotient is a signed number and it is

automatically received as a twos’ complement number.
Its numerical part takes a bit-set of (n-1) bits. Hence,
the hardware divider must have (n-1) number of levels
to calculate (n-1) digits. The sign of the quotient is
determined in advance. It defines the initial content of
the quotient registry RGZ.

if SignZ =0,
then RGZ = 000...000= 0;
if SignzZ =1, (2.3)

then RGZ :=111...111=2"1 _1 .

The latter which needs to be clarified, is that the
quotient does not always get exactly in this algorithm
due to the asymmetry of the twos’ complement
representation of the operands. The rules used for
quotient correction (adjustment) are presented in Table
1.2.

Table 1.2. Correction of the quotient

S!gp of the Sign_ of the Correction
Dividend X | Divisor Y
+ + No correction
+ - +1
- + +1, if Rg+1#0
- - +1, if Rkg+1=0

In this table, Rk-]+1 denotes the last partial

remainder, where k is the order of the polynomial of
the dividend X, and | - the order of the divisor Y,
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respectively. Operands and results have the same
format of n bits. The result of the left normalization of
the operands gives also the number N (N=k-1+1),
which presents the number of unknown digits of the
quotient.

As shown in Table 1.2, when the quotient is not
correct, it is adjusted by adding one to its least
significant bit. This necessitates recognition of the
relevant situations defined in the table. Recognizing (or
decoding) the need for correction performs a logical
function that depends on the signs of the operands, and
in the latter two cases, whether or not the division is
exact. If Table 1.2 is treated as a truth table, it can be
considered that the logical function expressing the need
for quotient correction is a disjunction of three logical
terms

COR = corl v cor2 w cor3 , (2.4)

where cor means correction. The first term expresses
the correction condition according to the second row of
the table

corl = (X[n-1]) n(Y[n-1]) . (1.5)

The second and the third term (cor2 and cor3) are
correction functions related to the third and fourth case
respectively. These functions depend on the signs of
the operands, as well as on the value of the last partial
remainder, i.e. whether the division is exact or not. So
we get the following expressions for them:

cor2=|(X[n-11)~ (V[n-1]) | » EQR). (1.6)
and therefore
cor3=[(X[n-11) N (Y[n-1]) JNEQR) .  (1.7)

In the above expressions EQ(R) denotes the logical
value of a function that decodes a zero partial
remainder in an arbitrary iteration (arbitrary level)
during the division. Since this fact has to be decoded at
each iteration, this function should have the following
cumulative look:

n-2
EQR) = U EQRm) -

m=0

(1.8)

In other words, function (1.8) expresses the
possibility of prematurely exact division, which can be
observed at each iteration.

We want to draw attention to the fact that,
according to the understanding of the traditional
division algorithm, the last partial remainder has an
extremely complex definition of being the last one. For
example, it is the last one if all the unknown digits of
the quotient, i.e. if all N digits are obtained. However,
there are cases of an exact premature division, after a
different number of levels, before the control number is
reached. In the sense of the problem solved here, i.e. in
the sense of the hardware implementation of the
division process, determining the remainder as the last
one is extremely inconvenient as it can be obtained at
any arbitrary level of the logic scheme of the divider.
Therefore, the statement that the division is exact, if
the quotient does not have a fractional part, is a very
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convenient interpretation of whether or not a correction
is needed in the last two cases of the table.

Based on the above explanation, we can present

the synthesized part of the structure of the hardware
divider.

N K Wx Wy
§s
— ] S
o /; -
N[ | o IS .-%
- & =
5 | “fg
5] ' T
= e ’ - Hardware
it a ' = divider
£ nE 7
S B s
Ak 1 g
8 N
gl 7/ &
o
L= a g
LA &
—
a / corl| cor2| cor3
1
: ¢
! Partial part of the 1
- quotient Z Correction

Fig. 1.2. Structural scheme for the stage of the actual
division
The two left normalized operand which signs
define the initial content of the quotient register RGZ
are fed to the inputs of the hardware divider. (n-1)
digits of the quotient (zn-2, Zn-3, ..., Z1, o), as well as
the three terms of the correction function (corl, cor2,
cor3), come out of the scheme. The quotient is fed to a
right-shift programmable array. The shifting is in the
direction of the radix point and it is an arithmetic shift,
i.e. with the so-called sign extension. As can be seen
from the drawing, this scheme is programmed to shift
by parameter K. The number of shifts is defined as:
K=(n-1)-N . (1.9
The value of parameter K can be calculated at the
left normalization stage when calculating the value of
N (number of unknown digits in the quotient). Then,
this value must be stored in a different registry RGK
until the end of the operation.

As far as the correction is concerned, the above
scheme illustrates how the result, which is shifted and
positioned according to the right position of the radix
point is adding with the value of the COR (0 or 1)
function fed to the least significant bit NeO of the half-
adder 2ADDER. The fractional part of the quotient in
the structural scheme is shown for illustration only. It
is untrue without correction and should be discarded. If
we still want to keep it, then the correction (+1) must
be applied not in the least significant bit of the integer
(bg), but in the least significant fixed bit of the real
quotient (b-p).

Figure 1.3. bellow presents the synthesized logical
scheme of a hardware divider, which always calculates
7 most significant digits of the quotient (zg to zp).
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Fig. 1.3. Principal logic scheme of a hardware divider 8x8
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After shifting of K-bits to the right, as shown in
the examples and in the logical structure presented in
Figure 1.2, the most significant N digits of the integer
remain in the register of the quotient. As is known, the
left-most bit contains the determined initial sign of the
quotient z7, and the subsequent digits repeat it
completing at left the shifted N-bit quotient according
to the rule for the sign extension.

As noted in the analysis, it is not possible for the
hardware solution of the actual division to achieve that
dynamics that is inherent in the algorithm. We mean
the actual length of the quotient, which varies and it is
expressed by the parameter N. The actual length of the
quotient is adapted to the scheme by the parameter K,
which initializes the programmable shift array.
However, the functionality of the solution favors its
use in the case of floating point division. As is known,
the mantissas of the operands are always left
normalized numbers, from which it follows that the
quotient always gets the same length. In other words,
when divide numbers with a left-fixed point, the
hardware divider does not depend in its synthesis on
the parameter N and its structure does not require a
programmable shift array. In order to align the two
cases, the shift array can be further manipulated to be
transparent when divide left-fixed point numbers.

Part 2 — Calculation of the Remainder
Theoretical Ground

Based on the synthesis outlined above in the first
part, here we present its continuation, referring to the
hardware calculation of the second result - the
remainder. In conclusion, we describe our idea of the
complete structure of the combinational logic scheme
of the divider, which makes the division operation
identical to the multiplication operation in both
structure and performance. In order to optimize the
combinational scheme of the divider and minimize its
latency, the same methods that are possible on the
hardware multiplier [4] can be used.

We have already pointed out that division Z=X/Y
is the most complex arithmetic operation, unlike any
other and generates two independent results required in
the computational algorithms - quotient Z and
remainder R. The following definition of operation
division can be given: the quotient and the remainder
are such numbers that Z.Y+R = X.

We also recall that Y is called a module for
comparing number X with other numbers having the
same remainder R as well as that the quotient Z is
defined as a multiplication factor of the module Y in
this conception. Exactly in this interpretation, number
X can be expressed by the multiplication factor Z, the
comparison module Y and the remainder, or the image
R,so X=ZY +R.

The iterative algorithm which is applied to obtain
the digits of the quotient is preceded with a left
normalization of the operands. In the process of this
normalization, the integer N, indicating the humber of
unknown digits of the quotient, is determined. The
number N is defined by the equation N = k-1+1.
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Presenting the algorithm in [4], it is shown that the
partial remainder, which determines the last digit in the
quotient, can be used to derive the following equation

2 KD Ry 41 = X-2Y
According to the definition given at the beginning,
this equality can be written as
2 kDR g =R. (2.1)

Equality (2.1) is remarkable in that it expresses
how the second result of a division operation can be
obtained, namely the remainder R of the division. The
conclusion is that the remainder R is contained in the
last partial remainder Rk-|+1, which should be shifted

(k-1)-bit to the right to be represented correctly as an

integer. This is a signed number and will be
automatically received in its twos’ complement
representation.

There is one further explanation. If the last

subtraction yielding the last partial remainder Rk-|+1,

has been successful, it contains the desired remainder
R. However, if the subtraction has been unsuccessful,
then the last partial remainder Rk-]+1 should be

restored from the preceding partial remainder Ri.|.
The desired remainder R is to be contained in Rgk-|.
Restoration of the previous partial remainder is
achieved by adding or subtracting the divisor Wy, an
operation selected according to the rule as follows
if (Rk-t41[n-11) = Wy[n-1],
then Ry_| = Ry —Wy;

. (2.2)
if (Rk-j41[n-1]) # Wy[n-1],

then Rg_| = Rgk_j41 + Wy.
Finally, the remainder R can be calculated

applying the following algorithm:

o If the obtained quotient Z is an odd number, the
remainder R is contained in the last difference.

o If the obtained quotient Z is an even number, the
remainder R is contained in the preceding
difference. In this case, for the determination
of the remainder, it is necessary to restore the
previous difference.

o The final remainder is obtained after an arithmetic
shift to the right of the (k-1) bits of the
corresponding partial remainder.

Two numerical examples illustrating the explained
algorithm are presented below. Both examples
illustrate an inexact division, i.e. dvision with
remainder. The first example illustrates a division of
two positive integers and the quotient being an even
number. The latter fact leads the algorithm to the case
when the remainder is contained in the preceding
difference (000100). It is restored, then (k-1)-bit
shifting to the right follows and the remainder is
formed.
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Examples

Example 1. Perform a division operation Z=X/Y of
the numbers X=31 and Y=5, which are presented in a
bitset of 6 bits (n = 6 [b]).

We should get the following results: quotient Z=6
and remainder R=1, i.e. 31=5.6+1.

X]= 0 11111 ; |Y|= 0 00101 .
Normalization of the operands X and Y.

Dividend is normalized

011111 =Wx

2

(—
Left normalization of
the Divisor (2 bits)

0[10100| = Wy
N = 2-0+1 = 3 (3 unknown digits of the gquotient)
k-1 =2-0 = 2 - shifted to 2[b] to form the remainder.

[X|psc =1 0011111 ;  [Y]pec =1 1111001 .
Normalization of the operands X and Y.

(1{0011111| =X |
Dividend is normalized
1/ 0011111| = Wx
(1{1111001] =Y,
<t
Left normalization of
the Divisor (4 bits)
1{0010000| = Wy

N=4-0+1 =5 (5 unknown digits of the quotient)
k-1=4-0 =4 - shifted to 4 [b] to form the remainder.

|z|= 0 00zzz = ? (Wy = 0/10100/,
0 00110, = 6. (Wx= 0]11111|,
/Aﬁ subtraction +
Py 1101100
A Diff. >0  0]01011
B <
by 0[10110
b subtraction +
Lot 101100
[} ]
I S, Diff. >0 0[00010
! <«
! 0{00100 | ~
! subtraction +
! 1101100
1
[ Diff. <0 1| 10000
Recovery of the previous partial remainder: o
1{10000| |5
addition + 3
0[10100| | &
0/ 00100 /
kl=2 —» | |
0/ 00001 ,
R=1.

In this case, the quotient does not need a
correction: Z=+6.

The second example illustrates the division of two
negative numbers, and the quotient is being an odd
number. The latter fact leads the algorithm to the case
when the remainder is contained in the last difference
(10100000). This is the case where the last difference

contains the remainder that is formed after the required
shifting.

Example 2. Perform a division operation Z=X/Y of
the numbers X=-97 and Y= -7, which are presented as
twos’ complement numbers in a bitset of 8 bits
(n=8[b]). We should get this answer: quotient Z=+13
and remainder R=-6, i.e. (-97)=(-7).13-6.
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[Zyc= 0 00zzzzz =2 | Wy= 1]0010000] |
0 0001101, =13 |WX: 1/0011111 |
MMM subtraction +
’,’ n ',Ill 0[ 1110000
1_;;;§_--- 1#0 00001111
! ',ll', Sign(Wy) # Sign(Diff)
P <
i '|“ N 0[ 0011110
Pt addition +
P ': I'. 1/ 0010000
l_;ﬁ4____ 1=1 1/0101110
s <
R 0[ 1011100
b subtraction +
i 0| 1110000
1
Ll 1=1 1]1001100
H <
| 1/0011000
1| subtraction +
! ',I 0[ 1110000
s 120 0/0001000
', «
1 0| 0010000
i addition +
‘: 1/ 0010000
L--1=1 110100000
1/ 0100000
k'|:4 —> —
1/1111010,
=[Rlzc: R=-6.

In this case, the quotient does not need an
adjustment: Z=+13.

Operation division is the most complex of all
operations on integer numbers. Various situations in
various combinations can occur during their execution.
Such situations are indefiniteness (Y=0), overflow,
exact division, and prematurely exact division. To
illustrate all these cases, a number of numerical
examples should be performed. Such examples, which
are useful for real synthesis, can be seen in [8].

Synthesis of the Logical Structure

The exposed theoretical grounds, algorithms and
numerical examples allow us to synthesize that part of
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a logical structure that complements the one presented
in the first part of the explanation to its final
appearance.

We consider the presentation of our project to be
completed with what we have said here. There are, of
course, a few more details, such as the case of
undefined operation (when Y=0), or the case of
overflow when divide integer numbers, etc. The
reflection of these subtleties in the synthesized scheme
is quite possible, requiring only an excellent
knowledge of the algorithm.
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Fig. 2.1. Logical structure of the hardware divider,
supplemented by the elements needed to calculate the
remainder

The complete implementation of the hardware
divider in the form of a single combinational scheme is
entirely possible. This translates the division into a
single cycle operation, making it analogous to
multiplication operation, as well as to some structural
elements in the Floating Point Units (FPU).
Conclusion

We briefly describe the entire composition of this
sophisticated combinational circuit. Only 4 registers
are needed - 2 input registers for the input operands X
and Y and two output registers for both results -
quotient Z and remainder R. Between these two pairs
of registers, the following composite combinational
circuits are sequentially arranged. First of all, on the
input registers, there are schemes for determining the
number of the leftmost insignificant digits of the
operands. These are combinational schemes that are
synthesized in our project, published in [7].

The numbers formed by these two schemes are fed
to an adder that calculates the above mentioned number
N. As a result of this adder, there may be also the
numbers K and (K-1) required to initialize the next
functional elements of the scheme. The operands are
still at the input of the hardware divider, and two
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combinations come at its outputs. The first one, passing
through the shift array and the half-adder 2 ADDER
(Figure 1.1), is loaded in the register RGZ as a first
result - quotient Z. The second one, representing the
last difference Rp-1, passes sequentially through the

adder ADD and the right shifting array and is loaded in
the output register RGR as a second result - remainder
R. If the scheme is used to divide floating-point
numbers, the remainder loses its meaning and the
number K takes a value of O that makes the shifting
array transparent.

The two numerical examples presented in the
article illustrate the functioning of the algorithm and
the synthesized logical structure. More numerical
examples can be seen in [8].

The sequential elements in the described
combinational scheme can be organized into a micro-
pipeline shown in Figure 2.2. The pipeline organization
will allow to increase the performance of the
calculation unit in cases where the mathematical
calculations contain multiple consecutive division
operations. The micro-pipeline control of the hardware
divider can be achieved with the methods and means,
which are described in detailes in the monograph [9].

| RG x | RG v |
k2 k2
SHL X SHL Y
Wx* *Wy
RGF Wx ] | RGF Wy
k 4 v
ADD
¢ N, K, K-1
RGF N,K,K-1
L 4 l v
ADD
l R1
RGF R1 |
D —
ADD
| I
' RGF Rz |
'
:
R A
'
: v ¥
ADD
i l Ric-1+1
[ RGF Z' I RGF Rii+1 |
; A 4
Sz 7 APD
z i Rk-1
[ RGF Z' | [ RGF Rk |
¥
ADD N TN
z 3 R
[ RG Z | [ RG R ]

Fig. 2.2. Examplary logical structure for micro-pipeline
organization of the hardware divider

As can be seen from the structure of the pipeline, it
includes RGF registers, combinational schemes -
adders ADD, programmable arrays shifting to the left —
SHL, and right - SHR. The structure also includes
finite state machines required to control the individual
stages of the pipeline, which are depicted on the
diagram.
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A.C. TAHEB, 10.11. IETKOBA

Texnuuyeckuil ynusepcurer Bapuel, bonrapus.

APUOMETHYECKOE JIEJIEHUE. YACTHOE MW OCTATOK. JIOT'HYECKHUE
CTPYKTYPbI U OIIEPAIIMUOHBIE CXEMBbI

IIpencraBieH MpoeKT BBIYUCIUTENS AT OBICTPOTrO BBINOJHEHHS ONEpAIH JENEeHHUS IEeNBIX YHCENI CO 3HAKOM.
KoHeuHBIM pe3ysbTaTOM CHHTE3a SBIAETCS TONHAs M YHUKaNbHas KOMOMHanMoHHas cxema. OmnepaHabl |
pe3yIbTaThl ONEPAIiK SABJSIOTCA YHCIIAMH, TPEACTaBICHHBIMU B JOMOJHUTEIRHOM Koje. IIpuBeneHsl cHHTE3
JOTUYECKOW CTPYKTYphl W KOMOMHHMPOBAaHHOH CXEMBI ISl pacyeTa IIepBOTO pe3yjbraTa — YacTHOTO W
CHHTE3MPOBAHHBIA aJTOPUTM W JIOTHYECKasi cXxeMa JUISl BHIYMCICHHUs] BTOPOTO pe3yJibTara - ocTarka. Omeparus
BBITIOJTHSACTCS. B TEUEHNE BPEMEHH NEPEKITIOYEHHUs CXeMbl KOMOMHAIIMHY, TO €CTh BBIUMCIICHUE JIBYX PE3YJIbTaTOB
MPOUCXOUT MAKCUMAIBHO OBICTPO.

Knwuesble ciioBa: onepanus A€J€HUE, HaCTHOEC, OCTATOK, AJITOPUTM, JIOTUYECKadA CXemMa.

. C. TSIHEB, 10.1I1. TIETKOBA

Texuiunuii yHiBepcurer Bapuu, bonrapis.

APAUOMETUYHE ALIEHHS. YACTKA I 3AJIMINOK. JJOTTYHI CTPYKTYPU I ONEPAIIVHI
CXEMH

[pencraBnennii mpoekT oOYKMCIIOBAaYa ISl MIBUAKOTO BUKOHAHHS OMEpawii JUIEHHS IUTMX YHCEN 31 3HAKOM.
KiHneBum pe3ynbTaToM CHHTE3Y € IIOBHA i yHiKanbHa KoMOiHamiliHa cxema. CHHTe3 BHMaraB IpeJCTABICHHS
TEOPETHYHOTO OOTPYHTYBaHHS JUIA OIEpalii JUICHHS | OTPUMAaHUX AITOPHUTMIB JJs OOYHCIEHHS YaCTKH i
sanmmiuKy. OmepaHan 1 pe3ysbTaTH oreparii € Yuciaamu, NpeICTaBIEHHMMH B JIOAaTKOBOMY Koi. Y cTarTi
HaBEJIEHO CHHTE3 JIOTIYHOI CTPYKTYPH 1 KOMOIHOBAHOI CXeMH JUIsS PO3paxyHKY MEPILOro pe3ybTaTy — YacTKH, a
TaKOX CHHTE30BaHUH aJITOPUTM 1 JIOTIYHY CXeMy JUIsi OOYMCIEHHs JPYroro pesyibTary — 3aiuiuky. Omneparis
BUKOHYETHCS IPOTATOM Yacy NMepeMUKaHHS KOMOIHAIIIHOT CXeMH, TAaKUM YHHOM, OOYHCIICHHS IBOX PE3yiIbTaTiB
BiZIOyBA€THCS MAKCHMANBHO IIBHJIKO.

Kuarouosi ciioBa: onepauisi AijieHHs1, NPUBATHe, 3AJIMIIOK, AJITOPUTM, JIOTIYHA cXeMa.
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