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Arithmetic Operation Division. Quotient and Remainder. 

Logical Structures and Calculation Schemes 

A project for fast execution of operation division on signed integer numbers is presented. The final 

result of the synthesis is a complete and unique combinational scheme. Synthesis requires a 

presentation of the theoretical ground for operation division and the resulting algorithms for 

calculating the quotient and the remainder. The operands and the results of the operation are twos’ 

complement numbers. The first part of the article presents the synthesis of the logical structure and of 

the combinational scheme for calculation of the first result - the quotient. The second part presents 

the synthesized algorithm and the logic scheme for calculating the second result - the remainder. The 

entire logic scheme for performing a division operation described in the conclusion shows that this 

operation is executable over the switching time of the combinational scheme. Thus, the calculation of 

the two results is as fast as possible, which can be achieved. A further exemplary logical structure of 

the divider with a micro-pipeline organization is also presented. It is suitable for serial execution of 

operation division. The functionality of the presented here hardware divider is illustrated by 

numerical examples. 
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Main Considerations 

 In both scientific publications and academic 

monographs (the vast list of which we do not apply 

here), the theoretical as well as the algorithmic side of 

the operation division are mainly concentrated on the 

calculation of the first result - the quotient. There is 

also a second result of this operation - a remainder. The 

calculation of the quotient is sought by two main 

approaches: based on the definition of the operation 

(Z=X/Y) [1], [4] or the definition (Z=(1/Y).X . In most 

cases the synthesized algorithms are based on positive 

operands or non-signed operands [2], [3], [6], which 

operation is defined as division by module. Although 

digital arithmetic is a scientific area that has been 

explored for decades [1], [4] there are rarely 

publications that contain algorithms for determining 

the remainder. Operation division can also be defined 

by multiplication operation X=Y.Z+R, where R is the 

remainder. The conclusion of this definition is that the 

remainder is an integer and, in order for equality to be 

true, it should have the sign of the dividend X. The 

same n-bit format of the bit-set is considered for the 

operands and the results. 

 Operation division (Z=X/Y) is relatively rarely met 

(about 2.5%). Due to its complex algorithm, it is 

considerably slower than other integer number 

operations, which is recognized even now [10]. For 

these reasons, multi-step sequential devices are still 

being designed for its implementation [5]. However, 

this trend is an experience, so the efforts to end it are 

fully justified [6]. The desire for guaranteed speeding-

up the calculations also leads us to a choice of a 

hardware implementation. 

 A consideration should also be given to the fact 

that the integer numbers are stored in the memory of 

the computer systems as 2’s complement signed 

numbers. In this representation, they are operands, and 

the results are automatically obtained as 2’s 

complement numbers too. This also applies to 

operation division. The use of the one’s complement 

operands, which holds most authors to algorithms by 

module, is not up to date. The example of the non-

homogeneous hardware solution shown in [6], which 

necessitates the alternation of adders and subtractors is 

a typical one. The main disadvantage of the subtractors 

is their greater cost compared to the adders. We try to 

avoid this drawback. It is also a fact that the machine 

commands for division in the digital processors require 

the calculation of both results (quotient and remainder), 

presented as twos’ complement numbers regardless of 

the user's wishes. The two numbers remain at its 

disposal in two different ALU registers. 

 For illustration, in our project, we have chosen the 

non-restoring algorithm for twos’ complement signed 

numbers based on the fixed divisor scheme. However, 

the approach we use can be successfully applied to 

other algorithms, such as those that allow the 

simultaneous obtaining of several digits of the quotient 

[4]. It is shown that the synthesized hardware divider 

calculates the quotient for both integer and fractional 

numbers, which is a prerequisite in dividing numbers 

represented in floating-point form. 

 

Part 1 – Calculation of the Quotient 

 The logic synthesis presented here deliberately 

misses the detailed presentation of the chosen 
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algorithm, as it is a fundamental one in digital 

arithmetic. We recall that the direct calculation of the 

quotient Z begins after the left normalization of the 

dividend X and the divisor Y. Left-normalized 

operands are denoted here by names Wx and Wy. At 

each iteration of the algorithm, one digit (0 or 1) of the 

quotient zm, m = 1,2,3, ..., n is obtained and the next 

operation (addition or subtraction) is determined. The 

rules are presented in Table 1.1. 

Table 1.1. Determining the consecutive digit of the 

quotient and the next operation 

Sign of the  

Remainder  

Rm 

Sign of the  

Divisor  

Wy 

Consecutive 

digit of the 

Quotient  

zm 

Next operation 

Rm+1= 

+ + 1 2.Rm - Wy 

+ - 0 2.Rm + Wy 

- + 0 2.Rm + Wy 

- - 1 2.Rm - Wy 

 

 As with multiplication, the idea of speeding-up 

operation division consists in the use of multiple 

adders. Thus the implementation of the actual division 

will be sought in the form of a combinational scheme. 

 The next digit zm of the quotient is determined 

comparing the sign of the divisor with the sign of the 

current partial remainder Rm. Accepting Table 1.1 as a 

truth table, we can synthesize a logic function that 

determines the value of the next digit in the quotient. 

Its equation is as follows 

( )

( )
(1.1).2n,0m

,]1[nWy]1[nR

]1[nWy]1[nRz

m

mm

−=

−−

−−=

 

 This is the elementary logical function of 

equivalence, i.e. if the signs of the current partial 

remainder and the divisor coincide, one (1) is recorded 

in the quotient, otherwise - zero (0). Along with this, a 

left shift is made to the partial remainder (2.Rm). The 

left shifting restores the order of the polynomial of the 

partial remainder to (n-2). 

 The next partial remainder Rm+1 is obtained after 

adding or subtracting the normalized divisor as 

indicated in the right column of Table 1.1 

(Rm+1=2.Rm±Wy). The arithmetic operation requires 

an adder. Function (1.1) is used for choosing the 

second operand in this sum. 

 So, we end this explanation stage with the resulting 

logical structure, presented in Figure 1.1. 

 As can be seen, the sign of the divisor RGWy[n-1] 

and the sign of the new partial remainder Rm[n-1] 

form the current digit in the quotient zm according to 

(1.1). 

 In order to obtain the current partial remainder Rm, 

the 1-bit left-shifted previous partial remainder Rm-1 is 

fed at the left input of the current adder ADDm,  i.e. 

2.Rm-1 = (Rm-1[(n-2)…0]│0). 

 

ADDm 
n-1 0 

R
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(R
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Fig. 1.1. Logical structure of the current adder in the 

divisor (current m level) 

 At the right input of the adder, the normalized 

divisor Wy is fed to the addition or subtraction via the 

two-input multiplexer MUX. It is the content of the 

RGWy register where it remains until the end of the 

operation. The control of the right input of the adder is 

made by control signals (CS+) and (CS-). The logical 

values of these signals are encoded according to the 

following logic function: 

(1.2)
.0)(CS,1)(CS,1

;0)(CS,1)(CS,0
zm





=+=−

=−=+
=

then

then
if  

 The quotient is a signed number and it is 

automatically received as a twos’ complement number. 

Its numerical part takes a bit-set of (n-1) bits. Hence, 

the hardware divider must have (n-1) number of levels 

to calculate (n-1) digits. The sign of the quotient is 

determined in advance. It defines the initial content of 

the quotient registry RGZ. 

)(1.3

.12111...111:RGZ

,1SignZ

;0000...000:RGZ

,0SignZ

1n











−==

=

==

=

−
then

then

if

if

 

 The latter which needs to be clarified, is that the 

quotient does not always get exactly in this algorithm 

due to the asymmetry of the twos’ complement 

representation of the operands. The rules used for 

quotient correction (adjustment) are presented in Table 

1.2. 

Table 1.2.  Correction of the quotient 

Sign of the 

Dividend X 

Sign of the 

Divisor Y 
Correction 

+ + No correction 

+ - +1 

- + +1,   if   Rk-l+1  0 

- - +1,   if   Rk-l+1 = 0 

 

 In this table, Rk-l+1 denotes the last partial 

remainder, where k is the order of the polynomial of 

the dividend X, and l - the order of the divisor Y, 
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respectively. Operands and results have the same 

format of n bits. The result of the left normalization of 

the operands gives also the number N (N=k-l+1), 

which presents the number of unknown digits of the 

quotient. 

 As shown in Table 1.2, when the quotient is not 

correct, it is adjusted by adding one to its least 

significant bit. This necessitates recognition of the 

relevant situations defined in the table. Recognizing (or 

decoding) the need for correction performs a logical 

function that depends on the signs of the operands, and 

in the latter two cases, whether or not the division is 

exact. If Table 1.2 is treated as a truth table, it can be 

considered that the logical function expressing the need 

for quotient correction is a disjunction of three logical 

terms 

(1.4),cor3cor2cor1COR =  

where cor means correction. The first term expresses 

the correction condition according to the second row of 

the table 

)(1.5.1])(Y[n1])(X[ncor1 −−=  

 The second and the third term (cor2 and cor3) are 

correction functions related to the third and fourth case 

respectively. These functions depend on the signs of 

the operands, as well as on the value of the last partial 

remainder, i.e.  whether the division is exact or not. So 

we get the following expressions for them: 

  (1.6),EQ(R))1](Y[n)1](X[ncor2 −−=  

and therefore 

  (1.7).EQ(R))1](Y[n)1](X[ncor3 −−=  

 In the above expressions EQ(R) denotes the logical 

value of a function that decodes a zero partial 

remainder in an arbitrary iteration (arbitrary level) 

during the division. Since this fact has to be decoded at 

each iteration, this function should have the following 

cumulative look: 

(1.8).)EQ(REQ(R)
2n

0m
m

−

=

=  

 In other words, function (1.8) expresses the 

possibility of prematurely exact division, which can be 

observed at each iteration. 

 We want to draw attention to the fact that, 

according to the understanding of the traditional 

division algorithm, the last partial remainder has an 

extremely complex definition of being the last one. For 

example, it is the last one if all the unknown digits of 

the quotient, i.e. if all N digits are obtained. However, 

there are cases of an exact premature division, after a 

different number of levels, before the control number is 

reached. In the sense of the problem solved here, i.e. in 

the sense of the hardware implementation of the 

division process, determining the remainder as the last 

one is extremely inconvenient as it can be obtained at 

any arbitrary level of the logic scheme of the divider. 

Therefore, the statement that the division is exact, if 

the quotient does not have a fractional part, is a very 

convenient interpretation of whether or not a correction 

is needed in the last two cases of the table. 

 Based on the above explanation, we can present 

the synthesized part of the structure of the hardware 

divider. 
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Fig. 1.2.  Structural scheme for the stage of the actual 

division 

 The two left normalized operand which signs 

define the initial content of the quotient register RGZ 

are fed to the inputs of the hardware divider. (n-1) 

digits of the quotient (zn-2, zn-3, …, z1, z0), as well as 

the three terms of the correction function (cor1, cor2, 

cor3), come out of the scheme. The quotient is fed to a 

right-shift programmable array. The shifting is in the 

direction of the radix point and it is an arithmetic shift, 

i.e. with the so-called sign extension. As can be seen 

from the drawing, this scheme is programmed to shift 

by parameter K. The number of shifts is defined as: 

K = (n-1) – N  .                        (1.9) 

 The value of parameter K can be calculated at the 

left normalization stage when calculating the value of 

N (number of unknown digits in the quotient). Then, 

this value must be stored in a different registry RGK 

until the end of the operation. 

 As far as the correction is concerned, the above 

scheme illustrates how the result, which is shifted and 

positioned according to the right position of the radix 

point is adding with the value of the COR (0 or 1) 

function fed to the least significant  bit №0 of the half-

adder  ½ADDER. The fractional part of the quotient in 

the structural scheme is shown for illustration only. It 

is untrue without correction and should be discarded. If 

we still want to keep it, then the correction (+1) must 

be applied not in the least significant bit of the integer 

(b0), but in the least significant fixed bit of the real 

quotient (b-r). 

 Figure 1.3. bellow presents the synthesized logical 

scheme of a hardware divider, which always calculates 

7 most significant digits of the quotient (z6 to z0).  

 

91



ISSN 1996-1588 Наукові праці ДонНТУ №1 (28)-2 (29), 2019 
 Серія “Інформатика, кібернетика   

 та обчислювальна техніка” 
 

(УС-)
1
 

(УС+)
1
 

&    & 

1 

Wx7 

(Рг. Wy) 

(Рг. Wy) 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

(Рг. Wx) 

=1 

(УС-)
2
 

(УС+)
2
 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

SM 

P     Z 

X   Y   P 

Z6 

& & & & & & & 

(УС-)
3
 

(УС+)
3
 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

Z5 

& & & & & & & 
EQ(R2) 

(УС-)
4
 

(УС+)
4
 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

Z4 

& & & & & & & 
EQ(R3) 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

(УС-)
5
 

(УС+)
5
 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

SM 

P     Z 

X   Y   P 

Z3 

& & & & & & & 
EQ(R4) 

(УС-)
6
 

(УС+)
6
 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

Z2 

& & & & & & & 
EQ(R5) 

(УС-)
7
 

(УС+)
7
 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

&    & 

1 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

Z1 

& & & & & & & 
EQ(R6) 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

SM 

P     Z 

X   Y   P 

Z0 

& & & & & & & 

EQ(R7) 

1 

EQ(R1) 

1 

1 

1 

1 

1 

EQ(R) 

& 

& 

& 

cor2 

cor3 

cor1 
1 

COR 

=1 

=1 

=1 

=1 

=1 

=1 

=1 

Wx6 Wx5 Wx4 Wx3 Wx2 Wx1 Wx0 

Wy6 Wy5 Wy4 Wy3 Wy2 Wy1 Wy0 Wy7 

Wy6 Wy5 Wy4 Wy3 Wy2 Wy1 Wy0 Wy7 

 
Fig. 1.3.  Principal logic scheme of a hardware divider 8x8 
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After shifting of K-bits to the right, as shown in 

the examples and in the logical structure presented in 

Figure 1.2, the most significant N digits of the integer 

remain in the register of the quotient. As is known, the 

left-most bit contains the determined initial sign of the 

quotient z7, and the subsequent digits repeat it, 

completing at left the shifted N-bit quotient according 

to the rule for the sign extension. 

 As noted in the analysis, it is not possible for the 

hardware solution of the actual division to achieve that 

dynamics that is inherent in the algorithm. We mean 

the actual length of the quotient, which varies and it is 

expressed by the parameter N. The actual length of the 

quotient is adapted to the scheme by the parameter K, 

which initializes the programmable shift array. 

However, the functionality of the solution favors its 

use in the case of floating point division. As is known, 

the mantissas of the operands are always left 

normalized numbers, from which it follows that the 

quotient always gets the same length. In other words, 

when divide numbers with a left-fixed point, the 

hardware divider does not depend in its synthesis on 

the parameter N and its structure does not require a 

programmable shift array. In order to align the two 

cases, the shift array can be further manipulated to be 

transparent when divide left-fixed point numbers. 
 

Part 2 – Calculation of the Remainder 

Theoretical Ground 

Based on the synthesis outlined above in the first 

part, here we present its continuation, referring to the 

hardware calculation of the second result - the 

remainder. In conclusion, we describe our idea of the 

complete structure of the combinational logic scheme 

of the divider, which makes the division operation 

identical to the multiplication operation in both 

structure and performance. In order to optimize the 

combinational scheme of the divider and minimize its 

latency, the same methods that are possible on the 

hardware multiplier [4] can be used. 

 We have already pointed out that division Z=X/Y 

is the most complex arithmetic operation, unlike any 

other and generates two independent results required in 

the computational algorithms - quotient Z and 

remainder R. The following definition of operation 

division can be given: the quotient and the remainder 

are such numbers that  Z.Y+R = X. 

 We also recall that Y is called a module for 

comparing number X with other numbers having the 

same remainder R as well as that the quotient Z is 

defined as a multiplication factor of the module Y in 

this conception. Exactly in this interpretation, number 

X can be expressed by the multiplication factor Z, the 

comparison module Y and the remainder, or the image 

R, so X = Z.Y + R. 

 The iterative algorithm which is applied to obtain 

the digits of the quotient is preceded with a left 

normalization of the operands. In the process of this 

normalization, the integer N, indicating the number of 

unknown digits of the quotient, is determined. The 

number N is defined by the equation N =  k-l+1. 

 Presenting the algorithm in [4], it is shown that the 

partial remainder, which determines the last digit in the 

quotient, can be used to derive the following equation 

.Z.YXR.2 1lk
l)(k −=+−

−−  

 According to the definition given at the beginning, 

this equality can be written as  

(2.1).RR.2 1lk
l)(k =+−

−−  

 Equality (2.1) is remarkable in that it expresses 

how the second result of a division operation can be 

obtained, namely the remainder R of the division. The 

conclusion is that the remainder R is contained in the 

last partial remainder Rk-l+1, which should be shifted 

(k-1)-bit to the right to be represented correctly as an 

integer. This is a signed number and will be 

automatically received in its twos’ complement 

representation. 

 There is one further explanation. If the last 

subtraction yielding the last partial remainder Rk-l+1, 

has been successful, it contains the desired remainder 

R. However, if the subtraction has been unsuccessful, 

then the last partial remainder Rk-l+1 should be 

restored from the preceding partial remainder Rk-l.  

The desired remainder R is to be contained in Rk-l. 

Restoration of the previous partial remainder is 

achieved by adding or subtracting the divisor Wy, an 

operation selected according to the rule as follows 

(2.2)

.WyRR

,]1Wy[n)]1[nR(

;WyRR

,]1Wy[n)]1[nR(

1lklk

1lk

1lklk

1lk













+=

−−

−=

−=−

+−−

+−

+−−

+−

then

then

if

if

 

 Finally, the remainder R can be calculated 

applying the following algorithm: 

• If the obtained quotient Z is an odd number, the 

remainder R is contained in the last difference. 

• If the obtained quotient Z is an even number, the 

remainder R is contained in the preceding 

difference. In this case, for the determination 

of the remainder, it is necessary to restore the 

previous difference. 

• The final remainder is obtained after an arithmetic 

shift to the right of the (k-l) bits of the 

corresponding partial remainder. 

 Two numerical examples illustrating the explained 

algorithm are presented below. Both examples 

illustrate an inexact division, i.e. dvision with 

remainder. The first example illustrates a division of 

two positive integers and the quotient being an even 

number. The latter fact leads the algorithm to the case 

when the remainder is contained in the preceding 

difference (000100). It is restored, then (k-l)-bit 

shifting to the right follows and the remainder is 

formed. 
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Examples 

Example 1.  Perform a division operation Z=X/Y of 

the numbers X=31 and Y=5, which are presented in a 

bitset of 6 bits (n = 6 [b]).  

     We should get the following results: quotient  Z=6 

and remainder  R=1,  i.e.  31=5.6+1. 

 

|X| =  0  11111  ;              |Y| =  0  00101  . 

Normalization of the operands X and Y. 

   0  11111   = X 

    Dividend is normalized 

   0  11111   = Wx 
 

 

   0  00101   = Y 

       2 

     Left normalization of 
     the Divisor (2 bits) 

   0  10100   = Wy  
N = 2-0+1 = 3 (3 unknown digits of the quotient) 

k-1 = 2-0 = 2 - shifted to 2[b] to form the remainder. 
 

    |Z| =  0  00zzz    =  ?  Wy = 0  10100   

 0  00110,    =  6.  Wx = 0  11111   

    subtraction  + 
      1  01100   

    Diff. > 0 0  01011   
              
      0  10110   
    subtraction  + 
      1  01100   

    Diff. > 0 0  00010   
              
      0  00100   
    subtraction  + 
      1  01100   

    Diff. < 0 1  10000   

  Recovery of the previous partial remainder: 

      1  10000   
        addition  + 
      0  10100   

      0  00100   

       k-l=2    → 

      0  00001 ,   

                                                                            R = 1 . 

re
c
o
v
e
ri
n
g
 

 
 In this case, the quotient does not need a 

correction:  Z=+6. 

 The second example illustrates the division of two 

negative numbers, and the quotient is being an odd 

number. The latter fact leads the algorithm to the case 

when the remainder is contained in the last difference 

(10100000). This is the case where the last difference 

contains the remainder that is formed after the required 

shifting. 

Example 2.  Perform a division operation Z=X/Y of 

the numbers X= -97 and Y= -7, which are presented as 

twos’ complement numbers in a bitset of 8 bits 

(n=8[b]). We should get this answer: quotient Z=+13 

and remainder  R= -6,    i.e.   (-97) = (-7).13-6. 

    .11110011Y;00111111Х sC2'sC2' ==  

Normalization of the operands X and Y. 

   1  0011111   = X 

    Dividend is normalized 

   1  0011111   = Wx 
 

   1  1111001    = Y 

       4 

     Left normalization of 
     the Divisor (4 bits) 

   1  0010000   = Wy  

N=4-0+1 = 5   (5 unknown digits of the quotient) 

k-1=4-0 = 4   - shifted to 4 [b] to form the remainder. 
 

  [Z]2’C =  0  00zzzzz     =  ?  Wy = 1  0010000   

     0  0001101,    =13 Wx = 1  0011111     

        subtraction  + 
      0  1110000   

    1  0  0  0001111   
                                      Sign(Wy)  Sign(Diff) 
                 
      0  0011110   
             addition  + 
      1  0010000   

    1 = 1  1  0101110   
                 
      0  1011100   
        subtraction  + 
      0  1110000   

    1 = 1  1  1001100   
                 
      1  0011000   
        subtraction  + 
      0  1110000   

    1  0  0  0001000   
                 
      0  0010000   
             addition  + 
      1  0010000   

    1 = 1  1  0100000   

      1  0100000   

    k-l=4 → 

      1  1111010 ,    

 

                                                     = [R]2’C ;     R = -6 . 
 

 In this case, the quotient does not need an 

adjustment:  Z=+13. 

 Operation division is the most complex of all 

operations on integer numbers. Various situations in 

various combinations can occur during their execution. 

Such situations are indefiniteness (Y=0), overflow, 

exact division, and prematurely exact division. To 

illustrate all these cases, a number of numerical 

examples should be performed. Such examples, which 

are useful for real synthesis, can be seen in [8]. 
 

Synthesis of the Logical Structure 

 The exposed theoretical grounds, algorithms and 

numerical examples allow us to synthesize that part of 
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a logical structure that complements the one presented 

in the first part of the explanation to its final 

appearance. 

 We consider the presentation of our project to be 

completed with what we have said here. There are, of 

course, a few more details, such as the case of 

undefined operation (when Y=0), or the case of 

overflow when divide integer numbers, etc. The 

reflection of these subtleties in the synthesized scheme 

is quite possible, requiring only an excellent 

knowledge of the algorithm. 
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Fig. 2.1. Logical structure of the hardware divider, 

supplemented by the elements needed to calculate the 

remainder 
 

 The complete implementation of the hardware 

divider in the form of a single combinational scheme is 

entirely possible. This translates the division into a 

single cycle operation, making it analogous to 

multiplication operation, as well as to some structural 

elements in the Floating Point Units (FPU). 

Conclusion 

 We briefly describe the entire composition of this 

sophisticated combinational circuit. Only 4 registers 

are needed - 2 input registers for the input operands X 

and Y and two output registers for both results - 

quotient Z and remainder R. Between these two pairs 

of registers, the following composite combinational 

circuits are sequentially arranged. First of all, on the 

input registers, there are schemes for determining the 

number of the leftmost insignificant digits of the 

operands. These are combinational schemes that are 

synthesized in our project, published in [7]. 

 The numbers formed by these two schemes are fed 

to an adder that calculates the above mentioned number 

N. As a result of this adder, there may be also the 

numbers K and (K-1) required to initialize the next 

functional elements of the scheme. The operands are 

still at the input of the hardware divider, and two 

combinations come at its outputs. The first one, passing 

through the shift array and the half-adder ½ ADDER 

(Figure 1.1), is loaded in the register RGZ as a first 

result - quotient Z. The second one, representing the 

last difference Rn-1, passes sequentially through the 

adder ADD and the right shifting array and is loaded in 

the output register RGR as a second result - remainder 

R. If the scheme is used to divide floating-point 

numbers, the remainder loses its meaning and the 

number K takes a value of 0 that makes the shifting 

array transparent. 

 The two numerical examples presented in the 

article illustrate the functioning of the algorithm and 

the synthesized logical structure. More numerical 

examples can be seen in [8]. 

 The sequential elements in the described 

combinational scheme can be organized into a micro-

pipeline shown in Figure 2.2. The pipeline organization 

will allow to increase the performance of the 

calculation unit in cases where the mathematical 

calculations contain multiple consecutive division 

operations. The micro-pipeline control of the hardware 

divider can be achieved with the methods and means, 

which are described in detailes in the monograph [9]. 
 

RG X RG Y 

SHL X SHL Y 

ADD 

Wx Wy 

N, K, K-1 

RGF Wx RGF Wy 

RGF  N,K,K-1 

ADD 

R1 

RGF  R1 

 

ADD 

R2 

RGF  R2 

 

ADD 

Rk-l+1 

RGF  Rk-l+1 
 

SHL Z’ 

Z’ 

RGF Z’ 

ADD 

RG Z 

ADD 

RGF  Rk-l 
 

Rk-l 

SHR 

R 

RG R 

RGF Z’ 

Z 

 

Fig. 2.2. Examplary logical structure for micro-pipeline 

organization of the hardware divider 

 As can be seen from the structure of the pipeline, it 

includes RGF registers, combinational schemes – 

adders ADD, programmable arrays shifting to the left – 

SHL, and right - SHR. The structure also includes 

finite state machines required to control the individual 

stages of the pipeline, which are depicted on the 

diagram. 
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АРИФМЕТИЧЕСКОЕ ДЕЛЕНИЕ. ЧАСТНОЕ И ОСТАТОК. ЛОГИЧЕСКИЕ 

СТРУКТУРЫ И ОПЕРАЦИОНЫЕ СХЕМЫ 
Представлен проект вычислителя для быстрого выполнения операции деления целых чисел со знаком. 

Конечным результатом синтеза является полная и уникальная комбинационная схема. Операнды и 

результаты операции являются числами, представленными в дополнительном коде. Приведены синтез 

логической структуры и комбинированной схемы для расчета первого результата – частного и 

синтезированный алгоритм и логическая схема для вычисления второго результата - остатка. Операция 

выполняется в течение времени переключения схемы комбинации, то есть  вычисление двух результатов 

происходит максимально быстро.  

Ключевые слова:  операция деление, частное, остаток, алгоритм, логическая схема. 
 

Д. С. ТЯНЕВ, Ю.П. ПЕТКОВА  

Технічний університет Варни, Болгарія. 

АРИФМЕТИЧНЕ ДІЛЕННЯ. ЧАСТКА І ЗАЛИШОК. ЛОГІЧНІ СТРУКТУРИ І ОПЕРАЦІЙНІ 

СХЕМИ 

Представлений проект обчислювача для швидкого виконання операції ділення цілих чисел зі знаком. 

Кінцевим результатом синтезу є повна і унікальна комбінаційна схема. Синтез вимагав представлення 

теоретичного обгрунтування для операції ділення і отриманих алгоритмів для обчислення частки і 

залишку. Операнди і результати операції є числами, представленими в додатковому коді. У статті 

наведено синтез логічної структури і комбінованої схеми для розрахунку першого результату – частки, а 

також синтезований алгоритм і логічну схему для обчислення другого результату – залишку. Операція 

виконується протягом часу перемикання комбінаційної схеми, таким чином, обчислення двох результатів 

відбувається максимально швидко. 

Ключові слова: операція ділення, приватне, залишок, алгоритм, логічна схема. 
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